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Abstract: Developing a bridge management strategy at the network level with efficient use of capital
is very important for optimal infrastructure remediation. This paper introduces a novel decision
support system that considers many aspects of bridge management and successfully implements
the investigated methodology in a web-based platform. The proposed decision support system
uses advanced prediction models, decision trees, and incremental machine learning algorithms to
generate an optimal decision strategy. The system aims to achieve adaptive and flexible decision
making while entailing powerful utilization of nondestructive evaluation (NDE) methods. The NDE
data integration and visualization allow automatic retrieval of inspection results and overlaying
the defects on a 3D bridge model. Furthermore, a deep learning-based damage growth prediction
model estimates the future condition of the bridge elements and utilizes this information in the
decision-making process. The decision ranking takes into account a wide range of factors including
structural safety, serviceability, rehabilitation cost, life cycle cost, and societal and political factors to
generate optimal maintenance strategies with multiple decision alternatives. This study aims to bring
a complementary solution to currently in-use systems with the utilization of advanced machine-
learning models and NDE data integration while still equipped with main bridge management
functions of bridge management systems and capable of transferring data to other systems.

Keywords: bridge management; decision making; machine learning; maintenance and repair; non-
destructive evaluation; life cycle cost; decision support system

1. Introduction

Deterioration of road infrastructure arises from aging and various other factors. The
aging of bridges is one of the most critical factors for a large number of underperform-
ing bridges in the US. According to Federal Highway Administration (FHWA) and Fed-
eral Transit Administration (FTA) [1], the total number of bridges listed in the National
Bridge Inventory (NBI) was 588,844 in 2000; approximately 67% of them were more than
25 years old, and 26% of them were over 50 years old. By 2015, the number increased to
611,845 bridges, and 72% of them were older than 25 years, and 38% were over 50 years
old [2]. Thus, structural systems have aged to an extent that critical decisions such as
repair or replacement should be made effectively. To prevent the impending degradation of
these bridges, utilizing novel technologies for periodic inspection, assessment, and better
management for proper maintenance has become more critical. Therefore, innovative
technologies and procedures are needed to allow infrastructure owners to monitor their
bridges more effectively and create optimal maintenance strategies. However, the progres-
sive improvement on the aforementioned needs is slow, even though the existing status
of the US civil infrastructure is well documented (e.g., ASCE report card [3]). One of the
challenges in better managing bridges is the use of novel technologies and the integration
of these technologies into the current bridge inspection and management systems in order
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to utilize the data necessary for optimal decision making. Sometimes the use of additional
data, if not managed properly, may become a burden to the state departments of trans-
portation (DOTs), leading to additional management and labor costs. Structural health
monitoring (SHM) can be considered at local and global level monitoring. Local SHM
(LSHM) evaluates the serviceability of bridges by monitoring local level defects such as
cracks, delamination, corrosion, and roughness. Global SHM (GSHM), on the other hand,
assesses the soundness of bridges by measuring vibration, deflection, and loading with
respect to expected behavior or in comparison to its past performance. Generally, periodic
LSHM data are employed for repair and maintenance work to recover the serviceability of
bridges, while GSHM is conducted to make decisions for rehabilitation and replacement.
Traditionally, SHM is conducted by means of visual (i.e., inspecting the structure with
the naked eye to look for potholes, cracks, spalling, etc.) [4], acoustic (i.e., identifying
the changes in sound pitch using a chain drag or hammer) [5], and force-based methods
(i.e., understanding the overall structural behaviors using forced-vibration and load-rating
tests) [6]. Both local SHM and global methods require direct access to bridges, causing extra
fieldwork and time as well as a potential danger to inspectors. With the growing potential
of camera-based methods, a complete noncontact SHM using NDE along with effective
utilization in decision making is possible. Figure 1 summarizes the complete methodology
proposed by Catbas et al. (2017) [7].
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1.1. State of Practice in Bridge Management

The bridge management practice in the United States has improved significantly over
the last 40 years both at the federal and state levels. At the federal level, the National
Bridge Inspection Standards (NBIS) unifies the method of data collection and condition
assessment on public highway bridges [8]. The collected inspection data by the state
DOTs are submitted to FHWA annually in a nationwide reporting/coding format that is
later entered into the NBI database [9]. Based on NBI, bridge owners are able to monitor
the condition and performance of their bridges to make accurate management decisions.
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FHWA imposes an appraisal rating on all government-owned bridges through routine
inspections that are recorded to NBI. The appraisals of bridges are carried out by scoring
the bridges in three categories: structural adequacy and safety, serviceability and functional
obsolescence, and essentiality for public use. After the scores in these categories are
summed, special reductions are made. The resultant score will give the sufficiency rating
that could be used for ranking bridges for infrastructure management. The sufficiency
rating in NBI’s bridge appraisals basically receives input from local and global assessments
as well as some additional parameters. At the state level, state DOTs may have different
procedures regarding bridge asset management, funding, maintenance considerations, and
resource allocation. A comprehensive National Cooperative Highway Research Program
(NCHRP) synthesis report published by the Transportation Research Board (TRB) puts
out the differences in state practices and explains the reasons of the variety in the bridge
management practices mainly on the following issues: the differences in the policy, financial,
technical and institutional operations as well as the different approaches to planning,
programming and budgeting [10]. According to the interviews conducted within the
synthesis study, mixed centralized and decentralized management strategies are followed
in many agencies. In contrast to the bridge replacement and rehabilitation projects, which
can be funded by the federal Highway Bridge Program (HDP) and thus are centralized,
the maintenance and repair projects are decentralized by being funded internally. In
order to maintain communication between centralized and decentralized decisions, many
states employed a bridge management system (BMS), which incorporates detailed state
procedures at the element level and NBIS requirements at the federal level [11]. Although
BMS has limited use toward decision making, state agencies find it helpful in terms of
compilation of data and display of short-term and long-term information [12]. According to
the NCHRP study, the characteristic use of BMS for state DOT decision making is analyzed
as follows:

• Technical aspects in the decision making such as condition assessment and perfor-
mance assessment are mainly held in BMS rather than economic and social analyses
that involve life cycle cost analysis, social impact analysis, etc.;

• The decision making based on BMS output is generally for short-term rather than long-
term purposes, and the recommended actions are not proactive of future predicted
conditions by lacking predictive models and scenario analysis;

• The decision-making models usually do not recommend multiple action strategies
with a comparative analysis.

1.2. Long-Term Decision Making

The implementation of proper infrastructure management has become crucial due
to the fact that the US infrastructure has deteriorated significantly in the last decade.
Advanced remediation strategies for deteriorated infrastructures are being developed
using certain decision-making models in order to maintain the optimal funding use and
remediation time [13]. To prevent the impending degradation of bridges, utilizing novel
technologies for periodic inspection, assessment, and better management for proper main-
tenance has become more critical. Although the inclination to use conventional inspection
methods still persists, advanced sensing technologies have the ability to better understand
the current condition with more resolution and accuracy [14]. For this reason, better utiliza-
tion of NDE as routine inspection practice becomes necessary. Optimized decision making
based on the NDE input can be carried out by integrating utilization solutions to bridge
management frameworks. Karaaslan (2018) designed a decision support framework to
retrieve information from novel NDE techniques including vision-based technologies (e.g.,
infrared thermography, other imagery data) and perform network-level decision analysis
using both NBI’s inputs and automatically retrieved inspection data from NDE [15]. The
framework implemented a condition prediction methodology introduced by Hiasa et al.
(2018) [16]. The methodology used the infrared thermography (IRT) data from the deck
surface collected over a period of 10 years to provide critical information on how local
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delamination can potentially impact the integrity of the overall structure, as described in
Figure 2. It will be possible to conduct time history prediction on the data to determine the
optimal timeline of the necessary maintenance/repair actions.
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Recent studies focused on innovative structural sensors and methodologies to analyze
the collected sensor data. Ozer (2019) used vibration measurements from smartphones
to identify the modal frequencies of existing bridges [17]. Ghiasi et al. (2021) developed
a data analytics approach to handle the uncertainty of sensor data used in structural
damage identification [18]. Noori et al. (2020) performed a system reliability assessment
of cable-supported bridges using deep belief networks [19]. As new NDE methods and
novel sensing technologies are becoming important tools in SHM research and practice, the
decision support systems have also undergone dramatic improvements in the last decade
with the employment of intelligent systems and sensor monitoring. Machine learning (ML)
and artificial intelligence (AI) started to play an important role in decision making. Many
researchers have recently proposed AI-based decision support systems for infrastructure
management. For instance, Yin (2010) developed an intelligent decision support system
that quantifies the inspection data and evaluates the deterioration of the existing bridges,
in addition to providing an optimum bridge monitoring plan for advanced management
according to the project budget and timeline [12]. Quintela (2007), as another example,
presents a real-time decision support system for civil engineering structures that makes
use of prediction models using artificial neural networks and data mining techniques.
The system occupies real-time sensors to verify the accuracy of the employed prediction
models [20]. In a different angle, Jiao (2013) proposed an unsupervised performance
evaluation strategy for bridges using fuzzy clustering on health monitoring data [21].
With the proposed strategy, the bridge condition can be assessed by calculating the fuzzy
nearness. Lee (2008) addresses the problems of slow adoption of bridge management
systems and impractical future prediction of bridge conditions. The study proposes an
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artificial neural network-based prediction algorithm called the backward prediction model
to treat the inconsistency in BMS inputs and bridge agencies’ existing data [22]. Bocchini
(2013) develops a simple Markov chain model for life cycle analysis of bridge networks. The
proposed model included the effect of deterioration, maintenance actions, bridge failures,
and rehabilitation [23]. These studies aim to solve bridge management problems using
pre-deep learning techniques (i.e., classical machine learning and clustering techniques).

2. Materials and Methods

The decision support framework proposed in this study has a multicomponent struc-
ture in which different bridge management operations will communicate with each other.
As described in Figure 3, the proposed system uses the condition assessment data obtained
with NDE and predicts the future condition of the bridge by utilizing historical information.
The deep learning-based prediction model is deployed on a cloud server and predicts the
future condition of the bridge components by processing the periodically collected NDE
data. The decision support component utilizes an adaptive decision ranking methodol-
ogy, which prioritizes the bridges based on a variety of factors that are grouped in three
categories: safety, serviceability, importance. The ranking uses a similar methodology to
FHWA’s bridge appraisals and expands the rating factors to include the future predicted
condition and the life cycle cost. Furthermore, the ranking methodology implements a
deep learning system that will adapt the ranking factors to the practice of the infrastructure
owner by fine-tuning the decision weights. The system will maintain synchronization
with the NBIS database and bridge management software to generate data for fine-tuning
the deep learning models for improved performance. Lastly, the maintenance decision
component generates multiple maintenance decision strategies for the prioritized bridges
while optimizing the cost and performance. This proposed methodology for an enhanced
decision support system is a first-step framework that aims to utilize the state-the-art
applications of artificial intelligence, and the system will require an extended duration
of development, testing, and verification before it can be effectively used in the bridge
inspection practice.
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The proposed infrastructure support methodology was implemented in web-based
framework that uses a powerful backend platform named SageMaker, a cloud computing
service operated by Amazon, to perform the deep learning-based predictions [24]. A fully
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functional graphical user interface was also developed to test the system components, as
shown in Figure 4.
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The proposed system is aimed to serve as more than a decision-making tool: an
integrated system that can make NDE much more beneficial and effective by retrieving
data automatically and transferring it to the widely used bridge management software.
Our proposed innovative decision support system aims to accomplish the following:

� Processing the bridge inventory data of both public and private agencies to retrieve
necessary bridge information used in decision support components (e.g., bridge
condition, historical data, geolocation);

� Retrieving local element inspection data directly from NDEs such as Infrared Ther-
mography (IRT), Ground Penetration Radar (GPR), laser scanning, remote sensing,
and drone inspections;

� Element condition assessment based on the quantified damage information and
Health index (HI) calculation of the structure. Analysis of historical element condition
states to predict the future condition using a time series forecasting model that
estimates the damage growth;

� A novel, adaptive decision ranking implementation for bridge maintenance decisions
using bridge appraisals and a deep learning-based ranking algorithm;

� Adapting the infrastructure owner’s maintenance practice through periodic model
updates to fine-tune the decision ranking weights using automatically generated data
from users’ decision actions;

� Decision tree implementation to produce maintenance/repair strategies with alterna-
tive actions and associated cost calculation;

� Damage visualization on realistic 3D bridge model with a timeline feature demonstra-
tion of both past and future conditions;

� Data exchange and synchronization with infrastructure owner’s bridge management
software and the NBI database.

The novel decision support framework discussed in this paper uses bridge deck
deterioration as an example; however, the methodology applies to any bridge component.
After the system integrates the NDE data for all bridges in a defined transportation network,
the condition history of each bridge component (i.e., deck, columns, railings, girders) is used
to calculate the structural health index of the bridge. Then, the system predicts the future
condition of each component using a deep learning-based approach (a cracking defect
was shown in the paper as an example, but it can easily be applied to other deterioration
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modes). Before the system generates maintenance decisions, the bridges in the network
are ranked using a deep learning-based ranking model. Lastly, the decision strategies
are generated for these prioritized bridges. The proposed system will, however, possess
limitations in updating the ranking if the bridge owner prioritizes a certain bridge for an
unfactored decision (e.g., impact on the bridge or flooded bridges on water) in which the
periodic inspection using NDE fails to provide enough data.

2.1. Integration of Nondestructive Evaluation Data

Effective utilization of NDE data is important for the decision support system to
generate objective and reliable decision strategies. The quantified information from NDE
can be utilized by machine learning models to make very accurate predictions. The goal
in integrating NDE data into the bridge management framework is primarily to overlay
the local defects on the bridge components and use the converted data in the LSTM model
for defect growth prediction. To integrate the NDE data in the system, the data frames
are encoded in XML format, which is also compatible with FHWA’s Robotics Assisted
Bridge Inspection Tool (RABIT™) [25]. As shown in Figure 5, the data frame is composed
of header information about the structure and the readings with x and y locations.
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A standardized format for NDE data is important for successful communication
between different technologies. However, with many types of NDE equipment, manu-
facturers, data formats, creating such a standardized format is difficult in the near term.
Over time, manufacturers will start supporting a specific export format if a certain bridge
management system becomes widely adopted. Visualizing NDE data is also important for
inspectors to make better decisions. Therefore, a decision support system should also be
capable of reading the point data to overlay damage information on a 3D bridge model.
In the implemented web-based platform, NDE inspection data can be retrieved by either
uploading exported NDE files from IRT, GPR, Ultrasound, LIDAR, UAV, etc., or via manual
entry of visual inspection reports. The visualization module in the software implementa-
tion displays the imported NDE data in an inspection timeline, allowing the infrastructure
owner to investigate the damage condition at different time steps (see Figure 6).

For a rational and quantifiable condition assessment, it is very important to use a
bridge management plan that can generate remediation strategies for different bridge
inspection practices [26]. The proposed decision support system can integrate NDE data
and calculate element condition states according to major bridge inspection guides (e.g.,
AASHTO, FHWA, state DOT inspection guides). However, for most inspection guides,
the condition state limits need to be quantified for effective utilization of NDE. After NDE
data are successfully imported and condition states are determined, the proposed system
calculates an important decision ranking parameter, bridge health index to determine
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overall structural health of the bridge. Health index (HI) is calculated for each year using
Equation (1). This equation was first introduced in a TRNews article [27]. HI is defined as
the ratio of the current element value (CEV) to the total element value (TEV) on the bridge.
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The implemented web-based tool uses element condition state limits defined by
AASHTO Guide Manual for Bridge Element Inspection [28] and calculates the Health index
for each inspection year, as shown in Figure 7. In the implemented system, the element
inspection data can easily be exported to formats compatible with federally used bridge
management software such as AASHTOWare BrM [29] and LTBP InfoBridge [30].
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2.2. Deep Learning-Based Prediction of Deterioration Growth

Past bridge inspection data, along with maintenance/repair information, constitute
the basis of predicting future conditions of bridge elements or components. The condition
of bridge elements innately possesses a significant amount of uncertainty, partly due to
inaccurately entered or missing inspection records [26]. In the proposed methodology, a
deep learning model tackles the uncertainty related to future condition prediction problems
by using time history prediction on the NDE data. In the proposed methodology, the
hybrid architecture of convolutional neural networks (CNN) and long-term short memory
(LSTM) models is periodically trained on the historical NDE data. The proposed network
architecture is called CNN–LSTM, a deep learning model that fuses CNN and LSTM to
predict image-based information in a future time step [31]. LSTMs are a very promising
solution to sequence- and time series-related problems [32]. They can effectively handle
time lags between data points, as opposed to recurrent neural networks (RNNs) [33].
Hence, the data do not have to be collected at a fixed time step. As shown in Figure 8, a
common LSTM architecture is composed of a cell (the memory part of the LSTM unit) and
three regulators, usually called gates, maintaining the flow of information through input,
output gate, and a forget gate [34]. These gates can learn which data in a sequence are
important to keep or throw away. By doing that, it can pass relevant information down
the long chain of sequences to make predictions. LSTMs have been successfully used in
many real-life applications such as speech recognition [35], forecasting stock prices [36],
and estimating cancer growth [37].
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the output gate controls the requested information at a particular time step).

CNNs are special types of deep neural networks that work remarkably well on
image data. These models have shown breakthrough performance in especially image
classification tasks (e.g., 2012 ImageNet Competition) [39]. CNN-based image analysis of
infrastructure damage has been vastly studied in the past [40,41]. As shown in Figure 9, the
CNN models are typically composed of convolution, activation, and pooling layers. In the
convolution layers, the input images are multiplied by small distinct feature matrices (i.e.,
kernel) that are attained from the input images. By convolving images, simply similarity
scores are assigned between every region of the image to find the distinct features. After
convolution, the negative values of similarity in the image matrix are removed in the
activation layer. Finally, the resultant image matrix is reduced to a very small size and
added together to form a single vector in the pooling layer.



www.manaraa.com

Appl. Sci. 2021, 11, 5928 10 of 20

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 20 
 

Figure 8. Diagram of a typical LSTM cell [38] (when data are received, input gate controls what information is stored in 
the long-term state, forget gate determines how long the stored information is preserved across the time instances, and 
lastly, the output gate controls the requested information at a particular time step). 

CNNs are special types of deep neural networks that work remarkably well on image 
data. These models have shown breakthrough performance in especially image classifica-
tion tasks (e.g., 2012 ImageNet Competition) [39]. CNN-based image analysis of infra-
structure damage has been vastly studied in the past [40,41]. As shown in Figure 9, the 
CNN models are typically composed of convolution, activation, and pooling layers. In the 
convolution layers, the input images are multiplied by small distinct feature matrices (i.e., 
kernel) that are attained from the input images. By convolving images, simply similarity 
scores are assigned between every region of the image to find the distinct features. After 
convolution, the negative values of similarity in the image matrix are removed in the ac-
tivation layer. Finally, the resultant image matrix is reduced to a very small size and added 
together to form a single vector in the pooling layer. 

 
Figure 9. A commonly used convolutional neural network—AlexNet [39]. 

The proposed hybrid architecture (CNN–LSTM) works as follows: CNN–LSTM in-
puts the NDE data as an image format and passes it through the convolutional layers of 
CNN, in which the underlying spatial features are extracted and stacked in a one-dimen-
sional vector. Then, the LSTM cells receive these feature vectors and make a prediction at 
a point in time. While the CNN branch of the model extracts the spatial relationships, LSTM 
creates a temporal context. Thus, these hybrid architectures are often called spatial-temporal 
neural networks. An important advantage of CNN–LSTM is that a time series prediction of 
spatial data can be performed in a single, end-to-end system instead of using two separate 
suboptimal systems. In the example shown in Figure 10, crack images belonging to inspec-
tions at different years are processed first in the CNN layers. The spatial features of crack 
deterioration extracted from CNN are then stored in LSTM cells. The output gate of the cell 
gives the predicted condition of the crack at the requested point of time. 

Figure 9. A commonly used convolutional neural network—AlexNet [39].

The proposed hybrid architecture (CNN–LSTM) works as follows: CNN–LSTM inputs
the NDE data as an image format and passes it through the convolutional layers of CNN, in
which the underlying spatial features are extracted and stacked in a one-dimensional vector.
Then, the LSTM cells receive these feature vectors and make a prediction at a point in
time. While the CNN branch of the model extracts the spatial relationships, LSTM creates
a temporal context. Thus, these hybrid architectures are often called spatial-temporal
neural networks. An important advantage of CNN–LSTM is that a time series prediction
of spatial data can be performed in a single, end-to-end system instead of using two
separate suboptimal systems. In the example shown in Figure 10, crack images belonging
to inspections at different years are processed first in the CNN layers. The spatial features
of crack deterioration extracted from CNN are then stored in LSTM cells. The output gate
of the cell gives the predicted condition of the crack at the requested point of time.
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The proposed methodology for damage condition prediction was implemented using
Keras, a high-level deep learning library written in Python [42]. However, the implementa-
tion lacked training data due to the unavailability of periodic NDE datasets over a certain
period. Therefore, the implemented model used pretrained weights from known public
datasets, followed by an updated schema with accurate weights as NDE data are entered
into the system, and the model is fine-tuned (i.e., transfer learning). A real-world dataset of
periodic NDE data is currently being collected from different sources including the Florida
Department of Transportation (FDOT) and FHWA. When the real-world dataset becomes
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available, a comprehensive performance evaluation will be carried out to measure the
model accuracy.

2.3. Adaptive Bridge Decision Ranking

For optimal bridge management, it is very important to make network-level decisions
that take into account all bridges in a transportation network. There is always limited
capital to be spent in maintenance and repair. Therefore, the bridges have to be prioritized
based on their importance and the capital needs for improvement. In the proposed decision
support methodology, all bridges in a defined transportation network are ranked according
to a wide range of criteria such as past inspection history, average daily traffic, number
of alternative routes, condition growth rate, and life cycle cost. The ranking methodology
also accounts for the available maintenance budget and allowed timeline as these external
factors will also have a significant impact on the decision making.

Due to the complexity of optimizing the decisions within a large number of ranking
criteria, a deep learning-based model was used in this study to tackle the multivariate
problem in the groupwise scoring. To develop and train the model, TF-Ranking, a scalable
deep learning library recently published by the Google TensorFlow team was used [43,44].
The same ranking model was already deployed in Google’s major software platforms such
as Google Drive and Gmail [45]. The proposed TF-Ranking model for bridge prioritiza-
tion first inputs the multivariate data in Library for Support Vector Machines (LBSVM)
format [46]), then extracts features from each decision ranking criteria (i.e., factors affecting
the bridge prioritization such as structural condition, repair cost, importance of location,
life cycle cost, etc.). From these extracted features, a scoring function is created in the
hidden layer of the neural network. During training, the weights of the scoring function are
optimized using Softmax Cross Entropy, a commonly used listwise loss metric. Finally, the
model is served in the SageMaker to make predictions from the raw data entries. Figure 11
describes the TF-Ranking model used in the proposed decision support system.
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The major challenge in deep-learning-based ranking models for infrastructure decision
making is the unavailability of supervised training data. These data would require example
rankings prepared by a large number of inspectors from many different bridges. Therefore,
a different strategy was followed in this study to generate the necessary training data. The
TF-Ranking model was initialized by training with an artificial dataset. First, the bridges
are scored based on the factors affecting the maintenance decision. The scoring method
uses NBI’s sufficiency rating as the basis but extends the ranking to include also bridge
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life cycle cost, current health index calculated from NDE, future predicted health index,
and available maintenance/repair budget. The scored bridges are used as initial training
data for the TF-Ranking model. However, the model will not learn the covariate features in
the bridge prioritization since the scoring was made independently for bridges. Therefore,
the model needs to be fine-tuned via incremental learning. As inspectors use the decision
support system, the inspector’s alterations in the prioritizations are used as finetuning data.
The system will then gradually improve and adapt the infrastructure owner’s practice.

The sufficiency rating in NBI’s bridge appraisals receives input from local and global
assessments as well as some additional parameters [47]. Similarly, the appraisals of bridges
in this study are carried out by scoring the bridges in three categories: safety, serviceability,
and essentiality. After the scores in these categories are summed, special reductions are
made. The resultant score will give the sufficiency rating that could be used for ranking
bridges for infrastructure management (priority ranking if the resultant score is subtracted
from 100). First, the structural adequacy score is calculated by subtracting the score
reductions from the overall condition rating and load capacity. The attained Rating Factor
(RF) value from the load-rating test is input in Equation (2) to find the safety score S1 [48].

S1 = 55− (32.4− RF)1.5 × 0.3254−CR. (2)

Safety score S1 cannot be less than zero and larger than 55. CR indicates the condition
reduction for the lowest condition rating of the bridge components. The condition rating r
in the scale of 0–9 is found, as discussed by Sobanjo (2008). The study proposes a translation
from element condition ratings to NBI’s component ratings [49]. Thus, the value of CR is
determined for varied conditions as follows:

� Critical condition and worse (r < 2)→ CR = 55;
� Serious condition (r = 3)→ CR = 40;
� Poor condition (r = 4)→ CR = 25;
� Fair condition (r = 5)→ CR = 10.

Serviceability score S2 in Equation (3) is calculated based on the geometry of the
structure, deck condition, structural evaluation, average daily traffic, and structure type.

S2 = 30− [SR + RS + VC]. (3)

Serviceability score S2 cannot be less than zero and larger than 30. SR indicates
structural rating in which the rating scores from deck condition, structural evaluation,
deck geometry, underclearances, waterway adequacy, and approach road alignment are
summed. The total reductions in the structural rating cannot be greater than 13%. RS is
determined based on the roadway sufficiency, which is calculated using average daily
traffic (ADT) and road width. The per lane averages of ADT and road width are used as
reference values to determine the score reduction. Finally, vertical clearance (VC) is another
rating parameter for serviceability. For insufficient vertical clearance, a score reduction
of 2% is applied. The detailed calculation steps of these reductions are explained in the
FHWA’s appraisal guide in Appendix D [48].

Bridge importance score S3 is calculated based on the average daily traffic value (ADT),
detour length (DL), and S1 and S2, as in Equation (4).

S3 = 15−
{

15

[
ADT×DL

320, 000× S1+S2
85

]
+ 2

}
. (4)

Bridge importance score S3 cannot be less than 0 and more than 15. In addition, there
is also a special reduction score S4, which is calculated based on detour length, structure
type, and traffic safety features of the bridge, as shown in Equation (5).

S4 =
(

DL4 × 7.9× 10−9
)
+ STR + TSR. (5)
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Special reduction score S4 cannot be less than 0 and more than 13. The FHWA’s bridge
appraisals guide defines the structure type reduction STR as 5% for the structure types 10,
12, 13, 14, 15, 16, or 17; and the traffic safety reduction TSR as 1–3% based on the number of
available traffic safety features (i.e., transitions, approach guardrail, and guardrail end) [48].

Decision ranking (DR) score extends the NBI’s sufficiency rating in the way that it
takes life cycle cost (LCC) into account and also offers flexibility to infrastructure owners’
decision practice. The resultant score is calculated by summing individual scores that
are adjusted by the weight factors w1, w2, w3 and w4, and multiplying it by the bridge
value index (VI). VI considers the life cycle cost of the bridge in the decision ranking, as
explained further in Equation (7). The default values of the weight factors are equal to
1.0. w1 is calibrated based on the current and predicted future Health index. However,
the infrastructure owners can adjust them according to their own decision considerations
(political pressure, higher serviceability concern, etc.) and the decision support system
will create a ranking score function and will optimize these parameters accordingly. The
decision ranking is calculated in Equation (6) as follows:

DR = (w1S1 + w2S2 + w3S3 −w4S4)×VI. (6)

Using a life cycle cost analysis, it is possible to comprehensively evaluate the total
generated environmental impact for a product and understand the trade-offs in impacts
between different periods in the product’s life cycle [50]. Catbas et al. (2008) investigated
structural health monitoring approaches for life cycle management of bridges [51]. The life
cycle cost analysis of bridges is explained in detail in the National Cooperative Highway
Research Program (NCHRP Report 483, 2002) report by Transportation Research Board [52].
Mohammadi et al. (1995) simplified the bridge life cycle cost (BLCC) and used a sin-
gle parameter to quantify the bridge decision-making process in an optimal scheduling
scheme [53]. Three major elements constitute the life cycle cost: (1) bridge condition rating,
(2) costs associated with various bridge projects, and (3) bridge service life expectancy.
Equation (7) shows the calculation of the life cycle cost of bridges.

VI = r× t/c (7)

In Equation (7), VI is the bridge value index of the component with the lowest condi-
tion rating r, t indicates bridge service life expectancy, and c stands for maintenance cost.
The calculated life cycle cost is an important decision parameter because infrastructure
owners often prefer building a new bridge instead of repairing the old one in case the
bridge repair cost is very high. Therefore, the life cycle cost was also included in the
decision ranking.

2.4. Decision Strategy Generation

Maintenance, repair, and rehabilitation of deteriorating bridge structures may require
very costly remediation actions. Advanced decision support systems aim to reduce reme-
diation costs by preventing the costs that are associated with the subjectivity of decision
making [13]. In the proposed decision support methodology, a multicriteria maintenance
strategy was used to generate the optimal maintenance actions that are specific to each
infrastructure owner’s maintenance practice. Decision trees are created for each single
deterioration mode with multicriteria optimization. The multicriteria selection strategy
is the simplified implementation of the methodology introduced by S. A. Dabous and
S. Alkas (2008). In the decision algorithm, multiple criteria are connected to four main
action categories: replacement, major rehabilitation, minor rehabilitation, and routine
maintenance [54]. The maintenance actions are determined after checking the associated
criteria, as described in Figure 12. The authors also introduced a ranking methodology that
provides score values for each criterion based on the rehabilitation strategy options.
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This study integrates the described multicriteria decision selection in a more simplified
way by taking into account the decision rankings directly predicted from the deep learning-
based model. For each rehabilitation strategy, the decision ranking score is updated, and
top strategies are suggested to the infrastructure owner.

3. Results

The artificial data for initial training were created from the ranking methodology
discussed throughout this section. An example set of data was created from Florida’s
NBI bridges. The data were split into different congressional districts to represent the
separate transportation networks. The training data have the following features in columns:
structural adequacy, serviceability, bridge importance, bridge value index, and available
fund. The values for district available funds were obtained from the FDOT 2019 Work
Program Instructions report, under District Bridge Repair and Rehabilitation Funds [55]. A small
sample from the generated data is shown in Table 1.

Table 1. A small sample from the generated data showing bridges from different districts.

District Intersected
Feature Type Structural

Adequacy Serviceability Bridge
Importance

Value
Index

Available
Fund

Decision
Ranking

FL-2 Brown
Creek Prestressed 37% 20% 10% 14.8 $18.3M 40

FL-4 Palm
Avenue Prestressed 45% 25% 12% 15.4 $15.9M 42

FL-5 Lake Jesup Prestressed 54% 29% 18% 20.1 $9.2M 38

FL-1 Gum Creek Concrete 55% 30% 15% 17.8 $10.3M 45

...

The TF-Ranking model was trained on the generated dataset only for 15,000 steps to
initialize the model without causing overfitting. The model will gradually improve in the
deployed decision support system and incrementally learn the valuable deep features of
the ranking methodology as the infrastructure owner makes changes in the ranking orders.
The training performance of the model is shown in Figure 13. Training loss indicates how
successfully the model converged with the training batches of the data at each step. The
evaluation metric that was used in the model is normalized discounted cumulative gain
(NDCG), a commonly used metric to measure ranking quality [56].

Since the ranking data used in the training was generated from an analytically de-
fined mythology, the TF-Ranking model easily fits the data during training, yet will not
perform well on real-life ranking without a fine-tuning. As real data arrives, the model will
improve incrementally.
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The decision selection was implemented inside the decision trees, allowing each
deterioration mode to be analyzed inside decision loops. Once the strategy is selected
and the funding availability is approved, detailed maintenance actions are automatically
generated. An example decision action tree for bridge deck concrete cracking according to
maintenance practice of FDOT is given in Figure 14. The maintenance practice is based
on the FDOT Bridge Maintenance and Repair Handbook [57]. In the decision tree, first, the
condition of the cracking is determined, and then the availability of funding is checked
through the decision ranking. Until the bridge reaches the target priority, the associated
maintenance actions are awaited. Once the funding becomes available (i.e., the bridge
falls inside the target ranking), conditional maintenance actions are suggested to the
infrastructure owner. For instance, minor cracking damage on the deck surface can be
repaired using a liquid sealer if there are many cracks. On the other hand, a moderate crack
should be repaired with pressure injection if the sealing was not previously made.
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The maintenance strategy generation was also integrated into the web-based system
implementation, as shown in Figure 15. The system automatically generates suggested
maintenance/repair strategies based on the predefined repair pricing input and the decision
tree algorithm used for each deterioration mode. However, it is possible to generate
optional strategies based on different decision criteria selection. The system will modify
the suggested maintenance actions. The user can also manually change a particular action
in the maintenance suggestions and update the cost calculation according to the user-
defined unit price list. The maintenance suggestions and the corresponding unit costs were
obtained from NCHRP Final Report 668, “Framework for a National Database System
for Maintenance Actions on Highway Bridges” [58]. In the shown example, the NDE
data belonging to high-speed IRT deck scanning were imported to the system, and the
suggested maintenance actions for cracks and spalling were automatically generated using
the decision trees (it was assumed that this bridge was assumed high priority in the decision
ranking). Then, a cost summary is shown to the user indicating the individual cost items
for each maintenance action. In this particular NDE inspection, repair for spalling was
shown as the major cost item.
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The enhanced decision support system introduced in this study benefits from novel ap-
proaches at multiple levels. When the NDE data are integrated into the system, a powerful
deep neural network, CNN–LSTM model predicts the future state of each concrete defect
based on the historical NDE input. Another novel approach used in the proposed decision
support methodology is that a deep learning-based ranking model, TF-Ranking, prioritizes
the bridges for maintenance/repair based on a large variety of factors including bridge
assessment history, bridge importance for state traffic, structural condition, serviceability,
repair cost, life cycle cost, repair time and funding availability. These factors are grouped
under structural adequacy, serviceability, importance, and funding. The adaptive ranking
model bases the NBI’s bridge sufficiency rating methodology but expands the evaluation
metrics to account for the life cycle cost and the future element condition. The system
also allows infrastructure owners to calibrate the weight factors for different ranking cate-
gories; thereby gives more control over the decision. The TF-Ranking model will quickly
adapt the bridge maintenance practice of the infrastructure owner as new training data for
fine-tuning are generated automatically from the decision makers’ priority adjustments.
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4. Discussions

An advanced decision support methodology is essential for bridge management in
state transportation networks since bridge structures may require major repairs over time
if a proper management strategy is not followed due to limited maintenance budget and
time. For that reason, many bridge management systems have been designed so far to
help decision makers in creating optimal strategies. Yet, in most cases, these systems
have become too complicated and lack functionality for the infrastructure owner. First
time in this study, CNN–LSTM, a hybrid neural network, was used to predict the future
condition of bridge elements/components. Unlike other machine learning algorithms,
CNN–LSTM can use both the spatial and temporal properties of the bridge deterioration.
The infrastructure support system presented in this paper, however, offers a practical and
easy adoption of complex bridge management models by requiring only a few inputs
from the user. The system creates a powerful integration with NDEs and thereby entails
easy input of inspection data to bridge management systems. Hence, the system serves
as a functional support tool that can connect to NDE technologies and enables extended
support for currently in-use bridge management systems by reducing the time for data
entry. Within an acceptable uncertainty range, the proposed system shows that the use
of NDEs has the potential to become routine inspection practice when integrated with
bridge management combined with benefits such as reduced cost and time of inspection.
Although the methodology was investigated for bridges, it can be applied to all civil
infrastructures. This study applied the methodology to only a small number of bridges
listed in the NBI database. The system introduced in this study has to be used by the
infrastructure owner over a period of time until the ranking provides the desired accuracy;
therefore, the initial rankings will not demonstrate adaptive behavior.

Although many advanced studies in bridge management provide good insight about
optimal management of bridges, they have unfortunately no real-life implementation. This
paper uses effectively some of these insights yet updates the overall methodology with
recent advancements in computer science. Furthermore, the proposed system was suc-
cessfully implemented in a web-based platform that uses Amazon SageMaker to perform
deep learning predictions in the backend. The implementation has a robust, functional
user interface and a powerful visualization module that helps bridge inspectors gain more
insight into the condition of the bridge. The visualization overlays NDE data on a 3D
bridge model and even demonstrates the predicted future condition of the damage visually
for a selected year.

In the ongoing work, real-world defect images from visual inspections are being gath-
ered for different years to fine-tune the condition prediction model. The model accuracy
will be validated on the validation set of the collected data. In future work, the perfor-
mance of the decision ranking methodology will be evaluated as real-life data are collected
through a web-based, pilot implementation of the system. With the availability of periodic
NDE data and real-world maintenance decisions, the proposed deep learning models
will be retrained, and the performance evaluations of these models will be discussed in a
detailed case study. Such a study will produce important results about the functional use
of the enhanced decision support methodology introduced here and its performance on
large-scale observations.
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